6V P R ENCODINGINSTYLE: ASTYLEGAN ENCODERFORIMAGE-TO-IMAGETRANSLATION

Elad Richardson' Yuval Alaluf'? Or Patashnik'~ Yotam Nitzan? Yaniv Azar! Stav Shapiro' Daniel Cohen-Or?
'Penta-Al “Tel-Aviv University

TEL AVIV UNIVERSITY

INTRODUCING PSP THE ARCHITECTURE ENCODING RESULTS FRONTALIZATION RESULTS
The pixel2style2pixel (pSp) framework provides a fast and accurate solution for encoding images into the latent space of a . 1 4 ' = '
pretrained StyleGAN. This encoding can then be used to easily manipulate and edit real images directly in the latent space. The pSp Encoder StyleGAN Generator
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What makes pSp even more interesting is that it can be applied to more general image-to-image translation tasks by directly L N T | -

encoding the input image into the latent code corresponding to the desired output image. Using this technique one can perform

| . Starting from an input image, the pSp architecture outputs the corresponding output image:
image-to-image translation even when the input image cannot be encoded into the latent space of our pretrained StyleGAN.

e Feature maps are first extracted using a standard feature pyramid over a ResNet backbone.

e For each of the 18 target styles, a small mapping network is trained to extract the learned styles from the corresponding
feature map. The mapping network, map2style, is a small fully convolutional network, which gradually reduces spatial
pSp size using a set of 2-strided convolutions followed by LeakyReLU activations.

Translator  The generated 512 vectors are fed into a pretrained StyleGAN which then generates the output image.

STYLE MIXING THE LOSSES
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WHAT CAN IT DO?

The proposed pixel2style2pixel framework can be used to solve a wide variety of image-to-image translation tasks, including
StyleGAN inversion, multi-modal conditional image synthesis, face frontalization, inpainting and super-resolution.
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- A curated set of losses allows pSp to learn accurate encodings.
L1pps adds perceptual similarity on top of the pixel-wise £,
loss. We found Ljp to be important for preserving identity
in facial images. L., serves as a regularization for training,
similarly to the truncation trick in StyleGAN.

pSp

Our model supports multi-modal image generation by resam-
pling styles and mixing them with the original encoding.

MULTI-MODALITY RESULTS

THE BENEFITS OF STYLEGAN
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Using a pretrained StyleGAN and performing the translation between images through the style domain differentiates pSp from
many standard image-to-image translation frameworks with several benetfits:

e Simplification of the training process, as no adversary discriminator needs to be trained.
e Better results for non-local translations, as the generator is governed only by the styles with no direct spatial input.

* Inherent support for multi-modal synthesis for ambiguous tasks such as image generation from sketches or super-
resolution, thanks to the ability to resample styles.




