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INTRODUCING PSP
The pixel2style2pixel (pSp) framework provides a fast and accurate solution for encoding images into the latent space of a
pretrained StyleGAN. This encoding can then be used to easily manipulate and edit real images directly in the latent space.

What makes pSp even more interesting is that it can be applied to more general image-to-image translation tasks by directly
encoding the input image into the latent code corresponding to the desired output image. Using this technique one can perform
image-to-image translation even when the input image cannot be encoded into the latent space of our pretrained StyleGAN.

WHAT CAN IT DO?
The proposed pixel2style2pixel framework can be used to solve a wide variety of image-to-image translation tasks, including
StyleGAN inversion, multi-modal conditional image synthesis, face frontalization, inpainting and super-resolution.

THE ARCHITECTURE
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Starting from an input image, the pSp architecture outputs the corresponding output image:

• Feature maps are first extracted using a standard feature pyramid over a ResNet backbone.

• For each of the 18 target styles, a small mapping network is trained to extract the learned styles from the corresponding
feature map. The mapping network, map2style, is a small fully convolutional network, which gradually reduces spatial
size using a set of 2-strided convolutions followed by LeakyReLU activations.

• The generated 512 vectors are fed into a pretrained StyleGAN which then generates the output image.

THE BENEFITS OF STYLEGAN
Using a pretrained StyleGAN and performing the translation between images through the style domain differentiates pSp from
many standard image-to-image translation frameworks with several benefits:

• Simplification of the training process, as no adversary discriminator needs to be trained.

• Better results for non-local translations, as the generator is governed only by the styles with no direct spatial input.

• Inherent support for multi-modal synthesis for ambiguous tasks such as image generation from sketches or super-
resolution, thanks to the ability to resample styles.
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Our model supports multi-modal image generation by resam-
pling styles and mixing them with the original encoding.

THE LOSSES

L2 (x) = ||x− pSp(x)||2. (1)

LLPIPS (x) = ||F (x)− F (pSp(x))||2, (2)

Lreg (x) = ||E(x)−w||2. (3)

LID (x) = 1− 〈R(x), R(pSp(x)))〉 , (4)

A curated set of losses allows pSp to learn accurate encodings.
LLPIPS adds perceptual similarity on top of the pixel-wise L2
loss. We found LID to be important for preserving identity
in facial images. Lreg serves as a regularization for training,
similarly to the truncation trick in StyleGAN.

MULTI-MODALITY RESULTS
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FRONTALIZATION RESULTS
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CONDITIONAL IMAGE GENERATION
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INPAINTING RESULTS
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LOCAL EDITING
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