Skip to content

Pyrallis Step by Step

The best way to understand pyrallis is through examples, let's get started!

Basic Parsing

Creation of an argparse configuration is really simple, just use pyrallis.parse on your predefined dataclass.

train_model.py
from dataclasses import dataclass, field
import pyrallis


@dataclass
class TrainConfig:
    """ Training config for Machine Learning """
    # The number of workers for training
    workers: int = field(default=8)
    # The experiment name
    exp_name: str = field(default='default_exp')


def main():
    cfg = pyrallis.parse(config_class=TrainConfig)
    print(f'Training {cfg.exp_name} with {cfg.workers} workers...')


if __name__ == '__main__':
    main()

Not familiar with dataclasses? you should probably check the Python Tutorial and come back here.

The config can then be parsed directly from command-line

$ python train_model.py --exp_name=my_first_model
Training my_first_model with 8 workers...
Oh, and pyrallis also generates an --help string automatically using the comments in your dataclass 🪄

$ python train_model.py --help
usage: train_model.py [-h] [--config_path str] [--workers int] [--exp_name str]

optional arguments:
  -h, --help      show this help message and exit
  --config_path str    Path for a config file to parse with pyrallis (default:
                  None)

TrainConfig ['options']:
   Training config for Machine Learning

  --workers int   The number of workers for training (default: 8)
  --exp_name str  The experiment name (default: default_exp)

Don't like the pyrallis.parse syntax?

def main():
    cfg = pyrallis.parse(config_class=TrainConfig)
    print(f'Training {cfg.exp_name} with {cfg.workers} workers...')
One can equivalently use the pyrallis.wrap syntax 😎
@pyrallis.wrap()
def main(cfg: TrainConfig):
    # The decorator automagically uses the type hint to parsers arguments into TrainConfig
    print(f'Training {cfg.exp_name} with {cfg.workers} workers...')
We will use this syntax for the rest of our tutorial.

Using Inherent dataclass Features

When using a dataclass we can add additional functionality using existing dataclass features, such as the post_init mechanism or @properties 😁

from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional
import pyrallis


@dataclass
class TrainConfig:
    """ Training config for Machine Learning """
    # The number of workers for training
    workers: int = field(default=8)
    # The number of workers for evaluation
    eval_workers: Optional[int] = field(default=None)
    # The experiment name
    exp_name: str = field(default='default_exp')
    # The experiment root folder path
    exp_root: Path = field(default=Path('/share/experiments'))

    def __post_init__(self):
        # A builtin method of dataclasses, used for post-processing our configuration.
        self.eval_workers = self.eval_workers or self.workers

    @property
    def exp_dir(self) -> Path:
        # Properties are great for arguments that can be derived from existing ones
        return self.exp_root / self.exp_name


@pyrallis.wrap()
def main(cfg: TrainConfig):
    print(f'Training {cfg.exp_name}...')
    print(f'\tUsing {cfg.workers} workers and {cfg.eval_workers} evaluation workers')
    print(f'\tSaving to {cfg.exp_dir}')

$ python -m train_model.py --exp_name=my_second_exp --workers=42
Training my_second_exp...
    Using 42 workers and 42 evaluation workers
    Saving to /share/experiments/my_second_exp

Notice that in all examples we use the explicit dataclass.field syntax. This isn't a requirement of pyrallis but rather a style choice. As some of your arguments will probably require dataclass.field (mutable types for example) we find it cleaner to always use the same notation.

Building Hierarchical Configurations

Sometimes configs get too complex for a flat hierarchy 😕, luckily pyrallis supports nested dataclasses 💥

@dataclass
class ComputeConfig:
    """ Config for training resources """
    # The number of workers for training
    workers: int = field(default=8)
    # The number of workers for evaluation
    eval_workers: Optional[int] = field(default=None)

    def __post_init__(self):
        # A builtin method of dataclasses, used for post-processing our configuration.
        self.eval_workers = self.eval_workers or self.workers


@dataclass
class LogConfig:
    """ Config for logging arguments """
    # The experiment name
    exp_name: str = field(default='default_exp')
    # The experiment root folder path
    exp_root: Path = field(default=Path('/share/experiments'))

    @property
    def exp_dir(self) -> Path:
        # Properties are great for arguments that can be derived from existing ones
        return self.exp_root / self.exp_name

# TrainConfig will be our main configuration class.
# Notice that default_factory is the standard way to initialize a class argument in dataclasses

@dataclass
class TrainConfig:
    log: LogConfig = field(default_factory=LogConfig)
    compute: ComputeConfig = field(default_factory=ComputeConfig)

@pyrallis.wrap()
def main(cfg: TrainConfig):
    print(f'Training {cfg.log.exp_name}...')
    print(f'\tUsing {cfg.compute.workers} workers and {cfg.compute.eval_workers} evaluation workers')
    print(f'\tSaving to {cfg.log.exp_dir}')
The argument parse will be updated accordingly
$ python train_model.py --log.exp_name=my_third_exp --compute.eval_workers=2
Training my_third_exp...
    Using 8 workers and 2 evaluation workers
    Saving to /share/experiments/my_third_exp

Easy Serialization

As your config get longer you will probably want to start working with configuration files. Pyrallis supports encoding a dataclass configuration into a yaml file 💾

The command pyrallis.dump(cfg, open('run_config.yaml','w')) will result in the following yaml file

compute:
  eval_workers: 2
  workers: 8
log:
  exp_name: my_third_exp
  exp_root: /share/experiments

pyrallis.dump extends yaml.dump and uses the same syntax.

Configuration files can also be loaded back into a dataclass, and can even be used together with the command-line arguments.

cfg = pyrallis.parse(config_class=TrainConfig,
                              config_path='/share/configs/config.yaml')

# or the decorator synrax
@pyrallis.wrap(config_path='/share/configs/config.yaml')

# or with the CONFIG argument
python my_script.py --log.exp_name=readme_exp --config_path=/share/configs/config.yaml

# Or if you just want to load from a .yaml without cmd parsing
cfg = pyrallis.load(TrainConfig, '/share/configs/config.yaml')

Command-line arguments have a higher priority and will override the configuration file

Finally, one can easily extend the serialization to support new types 🔥

# For decoding from cmd/yaml
pyrallis.decode.register(np.ndarray,np.asarray)

# For encoding to yaml 
pyrallis.encode.register(np.ndarray, lambda x: str(list(x)))

# Or with the wrapper version instead 
@pyrallis.encode.register
def encode_array(arr : np.ndarray) -> str:
    return str(list(arr))
That's it you are now a pyrallis expert!